
© Evan P. Silberstein, 2013

Couscewnution of Wouk

- What are the units for work? Gozales
-What are the units for energy? gozules
- The units for work and energy are the same.
- Work IS energy!
- Work and energy are both governed by the law of conservation of energy.
- This means that the work output or energy from a machine cannot be greater than what is put in.

So Htww Can a Machine

Thake Wowk rasicr?

- According to the law of conservation of energy, the work output is equal to the work input ($\mathrm{W}_{\text {out }}=\mathrm{W}_{\text {in }}$), certainly never bigger!
- How "easy" or "difficult" the work is depends on the force that needs to be exerted.
- It's easy to pick up a 1 kg mass (about 2 lbs .)
- It's difficult to pick up a 75 kg mass (about 175 lbs .)

Thate Thaking Work casict

- Keep in mind that work is the product of force and distance ($\mathrm{W}=\mathrm{F} \times \mathrm{d}$)
- $\mathrm{W}_{\text {in }}=\mathrm{F}_{\text {in }} \times \mathrm{d}_{\text {in }}$
- $W_{\text {out }}=F_{\text {out }} \times d_{\text {out }}$
- If $\mathrm{W}_{\text {out }}=\mathrm{W}_{\text {in }}$ then $\mathrm{F}_{\text {in }} \times \mathrm{d}_{\text {in }}=\mathrm{F}_{\text {out }} \times \mathrm{d}_{\text {out }}$
- The only way the force you exert $\left(\mathrm{F}_{\text {in }}\right)$ can be smaller than the weight of the mass you are trying to move ($\mathrm{F}_{\text {out }}$), is if you exert it through a greater distance ($\mathrm{d}_{\text {in }}>\mathrm{d}_{\text {out }}$).

Does Work Gnput Ahways

 Equal Work Output?- You can't get something for nothing, so work output is never greater than work input, . . .
- But you can waste effort!
- If you roll a barrel up a ramp, there is friction.
- Overcoming friction is not your goal. It is not part of the work you're trying to accomplish.
- It is wasted effort, and wasted work.
- Work done overcoming friction makes the work input greater than the work output.

Defining cefficicncy

- Work output $\left(\mathrm{W}_{\text {out }}\right)$ is all useful work. It is what you are trying to accomplish.
- Work input $\left(W_{i n}\right)$ is useful work plus work done overcoming friction.
- The more work a machine requires in order to overcome friction, the less efficient it is.
- Efficiency is the percentage of useful work out of the total work done.

$$
\text { Efficiency } \equiv \frac{\mathbb{W}_{\text {out }}}{W_{\text {iin }}} \times 100 \%
$$

Sample Problems

- How efficient is a machine with a work output of 75 J and a work input of 90 J ?

$$
\text { Effficiency } \frac{75 \mathrm{~J}}{90 \mathrm{~J}} \times 100 \%=83.3 \%
$$

- A machine has an efficiency of 60 percent. How much work was done to accomplish 120 J of work?

NOTE: Express the efficiency as a decimal by dividing by 100.

$$
60 \% \equiv \frac{120 \mathrm{~J}}{W_{\text {in }}} x-100 \% \% W_{\text {lin }} \equiv \frac{120 \mathrm{~J}}{0.60} \equiv 200 \mathrm{~J}
$$

- How much useful work was done if a machine with 80 percent efficiency required an input of 500 J ?

NOTE: Express the efficiency as a decimal by dividing by 100.

$$
80 \% \equiv \frac{W_{\text {out }}}{500 \mathrm{~J}} \times 100 \% ; W_{\text {out }} \equiv(0.80)(500 \mathrm{y}) \equiv 400 \mathrm{y}
$$

