

© Evan P. Silberstein, 2014

How Does an Incline Work?

- An inclined plane is a ramp.
- You slide an object up along the length of the ramp.
 - \circ This is the work input (W_{in}) (

$$\circ W_{in} = F_{in} \times d_{in}$$

 The work actually accomplished is lifting the object up the height of the ramp from the bottom to the top.

 $h = d_{out}$

- \circ This is the work output (W_{out})
- $\circ W_{out} = F_{out} \times d_{out}$

REVIEWING CONCEPTS

W - 4

3

Mechanical Advantage

- The applied force to a machine is called the **input force**.
- The resulting force from the machine is called the output force.

input force

- The **mechanical advantage** is the ratio of the output force to the input force.
 - o mechanical advantage = <u>output force</u> input force

$$\circ MA = \frac{F_{out}}{F_{in}}$$

output force

Efficiency

- Work output (W_{out}) is all useful work. It is what you are trying to accomplish.
- Work input (W_{in}) is useful work plus work done overcoming friction.
- The more work a machine requires in order to overcome friction, the less efficient it is.

Efficiency

 Efficiency is the percentage of useful work out of the total work done.

out

BACK TO THE INCLINE

1 - -

1

Incline Mathematical Relationships

 Ideally, if no work is wasted overcoming friction, the work input is equal to the work output.

$$\circ W_{in} = W_{out}$$

- \circ This means $F_{in} \times d_{in} = F_{out} \times d_{out}$
- Rearranging the equation results in the following:

$$\circ \frac{d_{in}}{d_{out}} = \frac{F_{out}}{F_{in}}$$

Mechanical Advantage of an Incline

- The mechanical advantage is the ratio of the output force to the input force.
- Since $\frac{d_{in}}{d_{out}} = \frac{F_{out}}{F_{in}}$ they are both the mechanical advantages.
 - The dimensions of the incline are not affected by friction.
 - The ratio of the input distance to the output distance is the ideal mechanical advantage.
 - \bigcirc IMA = $\frac{d_{in}}{d_{out}}$
 - The input force is increased by friction, reducing the mechanical advantage.
 - The ratio of the output force to the input force is the actual mechanical advantage.

$$\circ$$
 AMA = $\frac{F_{out}}{F_{in}}$

Sample Problem

A 980 N crate is pushed with a force of 196 N along 2.1 m plank to a shelf 0.3 m high.

- What is the ideal mechanical advantage? $IMA = \frac{d_{in}}{d_{out}} = \frac{2.1m}{0.3m} = 7$
- What is the actual mechanical advantage? $AMA = \frac{F_{out}}{F_{in}} = \frac{980 N}{196 N} = 5$
- What is the work input?

 $W_{in} = F_{in} \times d_{in} = (196 \text{ N})(2.1 \text{ m}) = 411.6 \text{ Nm} = 411.6 \text{ J}$

What is the work output

 $W_{out} = F_{out} \times d_{out} = (980 \text{ N})(0.3 \text{ m}) = 294 \text{ Nm} = 294 \text{ J}$

Same Sample Problem Continued

A 980 N crate is pushed with a force of 196 N along 2.1 m plank to a shelf 0.3 m high.

- How much work was done overcoming friction? $W_f = W_{in} - W_{out} = 411.6 \text{ J} - 294 \text{ J} = 117.6 \text{ J}$
- What is the machines efficiency? Efficiency = $\frac{W_{out}}{W_{in}} \times 100\% = \frac{294 \text{ J}}{411.6 \text{ J}} \times 100\% = 71.4\%$
- What is the force needed to overcome friction? $F_f = \frac{W_f}{d_{in}} = \frac{117.6 \text{ J}}{2.1 \text{ m}} = 56 \text{ N}$

Fout

- If there were no friction, what force would ideally be needed to slide the crate?
 - $F_{in} = \frac{F_{out}}{IMA} = \frac{980 \text{ N}}{7} = 140 \text{ N}$