
© Evan P. Silberstein, 2014

How Does an Incline Work?

- An inclined plane is a ramp.
- You slide an object up along the length of the ramp.
- This is the work input $\left(W_{\text {in }}\right)$
- $W_{\text {in }}=F_{\text {in }} \times d_{\text {in }}$

- The work actually accomplished is lifting the object up the height of the ramp from the bottom to the top.
- This is the work output ($W_{\text {out }}$)
- $W_{\text {out }}=F_{\text {out }} \times d_{\text {out }}$

REVIEWIING CONCEPTS

Mechanical Advantage

- The applied force to a machine is called the input force.
- The resulting force from the machine is called the output force.

- The mechanical advantage is the ratio of the output force to the input force.
- mechanical advantage $=\frac{\text { output force }}{\text { input force }}$
- $M A=\frac{F_{\text {out }}}{F_{\text {in }}}$

Efficiency

- Work output $\left(\mathrm{W}_{\text {out }}\right)$ is all useful work. It is what you are trying to accomplish.
- Work input $\left(W_{i n}\right)$ is useful work plus work done overcoming friction.
- The more work a machine requires in order to overcome friction, the less efficient it is.
- Efficiency is the percentage of useful work out of the total work done.

Enficiency $=\frac{\mathbb{W}_{\text {out }}}{\mathbb{W}_{\text {in }}} \times 100 \%$

BACIK TO THE INCLINE

Incline Mathematical Relationships

- Ideally, if no work is wasted overcoming friction, the work input is equal to the work output.
- $W_{\text {in }}=W_{\text {out }}$
- This means $F_{\text {in }} \times d_{\text {in }}=F_{\text {out }} \times d_{\text {out }}$
- Rearranging the equation results in the following:
$\circ \frac{d_{\text {in }}}{d_{\text {out }}}=\frac{F_{\text {out }}}{F_{\text {in }}}$

Mechanical Advantage of an Incline

- The mechanical advantage is the ratio of the output force to the input force.
- Since $\frac{d_{\text {in }}}{d_{\text {out }}}=\frac{F_{\text {out }}}{F_{\text {in }}}$ they are both the mechanical advantages.
- The dimensions of the incline are not affected by friction.
- The ratio of the input distance to the output distance is the ideal mechanical advantage.
- $I M A=\frac{d_{\text {in }}}{d_{\text {out }}}$
- The input force is increased by friction, reducing the mechanical advantage.
- The ratio of the output force to the input force is the actual mechanical advantage.
- $\mathrm{AMA}=\frac{F_{\text {out }}}{F_{\text {in }}}$

Sample Problem

A 980 N crate is pushed with a force of 196 N along 2.1 m plank to a shelf 0.3 m high.

- What is the ideal mechanical advantage?

$$
\mathrm{IMA}=\frac{d_{\text {in }}}{d_{\text {out }}}=\frac{2.1 m}{0.3 m}=7
$$

- What is the actual mechanical advantage?

$$
\text { AMA }=\frac{F_{\text {out }}}{F_{\text {in }}}=\frac{980 \mathrm{~N}}{196 \mathrm{~N}}=5
$$

-What is the work input?

$$
W_{\text {in }}=F_{\text {in }} \times d_{\text {in }}=(196 \mathrm{~N})(2.1 \mathrm{~m})=411.6 \mathrm{Nm}=411.6 \mathrm{~J}
$$

- What is the work output

$$
W_{\text {out }}=F_{\text {out }} \times d_{\text {out }}=(980 \mathrm{~N})(0.3 \mathrm{~m})=294 \mathrm{Nm}=294 \mathrm{~J}
$$

Same Sample Problem Continued

A $980 \mathbf{N}$ crate is pushed with a force of $196 \mathbf{N}$ along 2.1 m plank to a shelf 0.3 m high.

- How much work was done overcoming friction?

$$
W_{f}=W_{\text {in }}-W_{\text {out }}=411.6 \mathrm{~J}-294 \mathrm{~J}=117.6 \mathrm{~J}
$$

- What is the machines efficiency?

Efficiency $=\frac{W_{\text {out }}}{W_{\text {in }}} \times 100 \%=\frac{294 \mathrm{~J}}{411.6 \mathrm{~J}} \times 100 \%=71.4 \%$
-What is the force needed to overcome friction?

$$
\mathrm{F}_{\mathrm{f}}=\frac{\mathrm{W}_{\mathrm{f}}}{\mathrm{~d}_{\mathrm{in}}}=\frac{117.6 \mathrm{~J}}{2.1 \mathrm{~m}}=56 \mathrm{~N}
$$

- If there were no friction, what force would ideally be needed to slide the crate?
$F_{\text {in }}=\frac{F_{\text {out }}}{1 \mathrm{MA}}=\frac{980 \mathrm{~N}}{7}=140 \mathrm{~N}$

