

A Visual Approach

- It is said that "a picture is worth a thousand words."
- That would explain why graphing is such a good way to present data.
 - **Graphing** is a visual display of information.

Types of Graphs

Graphs in Science

DOWN

- Most graphs used in the sciences are line graphs.
- To make a proper visual display for a line graph, you need to:
 - Select the axes
 - $\,\circ\,$ Select the origin
 - Select the interval
 - Plot the points
 - Draw the best straight line or curve

A Good Visual Display

- Remember a graph is a visual display of information.
- It is important to make a good visual display.
- If you turned on the TV and saw a tiny picture in one corner, that would not be a good visual display. It's mostly wasted space.
- An almost empty graphing space with all the data in one small area is not a good display for the same reason.
- Next, you will learn how to make a good visual display.

Selecting Axes

- An *axis* is a straight line which may have numbers or categories arranged along it.
- Graphs showing the relationship between two variables generally have two axes arranged at right angles.
 - The horizontal axis is often called the X-axis.
 - The vertical axis is often called the Y-axis.
- The two perpendicular axes form the coordinates by which any point can be located.
 - The graph to the right shows the point (3,2). It is located 3 across on the X-axis and 2 up on the Y-axis

More on Selecting Axes

- Notice that the axes form four quadrants with a central point at (0,0). This central point is called the *origin*.
 O Points to the left of the origin have negative X-values.
 - Points below the origin have negative Y-values.
- Many of the quantities measured by scientists do not have negative values.
 - It doesn't make any sense to speak of a length, a mass, or a volume below zero.
 - A graph showing the relationship between the mass and volume of aluminum, for example, would have no negative values.
 - Graphs with only positive values have axes shaped like an "L".
 - This is the shape of the axes surrounding the quadrant in the upper right (Quadrant I).
 - All the other quadrants (Quadrant II Quadrant IV) have places for negative values.
 - These quadrants are not displayed when they are empty so space is not wasted.

Axis Selection - An Example

- Imagine you were preparing a graph showing the relationship between the mass and volume of different amounts of aluminum.
- Your data is shown in the table to the right.
- Since all your data values are positive, they are all in *Quadrant I*.
- Your axes should be "L" shaped.

Volume (mL)	Mass (g)
4.0	12.0
8.0	19.0
9.0	26.0
11.0	35.0
17.0	43.0
20.0	54.0
23.0	64.5
25.4	67.0

Selecting an Origin

DAVN

- The origin of a graph is an *arbitrary* point.
 This means it is selected for convenience.
- When the data displayed on a graph have both positive and negative values, it makes sense to select the point (0,0) as the origin because it is in the middle.
- If (0,0) is one of your data points, it is important to include it on the graph and to make it the origin.
 - When the graph is entirely in Quadrant I, however, points other than (0,0) may be more convenient to use as the origin.

More on Selecting an Origin

WRITE

- When the range of the data is small compared to the distance from zero to the lowest data point, it is wise to use a number closer to the lowest data point as the origin rather than using zero.
 - The range of the data is the difference between the highest data point and the lowest data point

In the graph below you would use an origin other than zero.

Origin Selection - An Example

• Consider your data:

Volume (mL)	Mass (g)
4.0	12.0
8.0	19.0
9.0	26.0
11.0	35.0
17.0	43.0
20.0	54.0
23.0	64.5
25.4	67.0

If you have no aluminum, the mass is zero, and the volume is zero, so (0,0) should be the origin.

Selecting an Appropriate Interval

- The space between the numbers on the axes is called an write interval.
- The numbers on the axes are usually spaced evenly, however, the intervals on the vertical and horizontal axes do not need to be the same.
- The intervals should be selected in such a way that the graph is spread out enough to cover the entire graphing space while leaving room for all the points to fit.
- The way the axes are numbered will depend on the size of the graph paper and the range of the graph.
 - The smallest possible interval is the range divided by the write number of boxes in the graphing space.
 - The range is the difference between the highest and lowest value for each variable.

Interval Selection - An Example

• Examine the data below.

Volume (mL)	Mass (g)
4.0	12.0
8.0	19.0
9.0	26.0
11.0	35.0
17.0	43.0
20.0	54.0
23.0	64.5
25.4	67.0
Since the origin is (0.0)	

- The X range is 25.4 0 = 25.4
- The Y range is 67.0 0 = 67.0

The graphing space is below.

Volume (mL)

 There are 15 boxes along both the X and Y axis.

Interval Selection Continued

The *Interval* ≥ Range Boxes

- The X-Interval • Interval $\geq \frac{25.4}{15} \geq 1.7$ • A convenient value would be 2
- The Y-Interval

 Oracle A convenient value would be 5

When the intervals are numbered it is not necessary to label every line.

Platting the Points

- Points are plotted by locating the horizontal and vertical coordinates of each point on the axes.
- If imaginary perpendicular lines are extended through the axes at the coordinates of a point, the place where the perpendicular lines cross is where the point is plotted.

12.0
19.0
26.0
35.0
43.0
54.0
64.5
67.0

Density of Aluminum

Drawing the Best Line or Curve

- Each of the points you plot represents a single measurement.
- Measurements are always imperfect.
- If the measurements were perfect, then you would connect the points as in a connect the dot drawing.
- Since each point only approximates the *TRUE* value, the points are not likely to fall directly on the line or curve.
- As a result, you need to interpret the data by drawing the best line or curve through the points.
- Errors of measurement tend to be random.
 - This means that measurements have an equal chance of being too high or too low.
 - The best line or curve is drawn in such a way that the points are distributed WRITE equally above and below it.

Density of Aluminum

Interpreting Graphs - Relationships

The four main types of relationships are shown below.

The relationship between the mass and volume of aluminum is linear and direct.

