
© Evan P. Silberstein, 2013

 PD

- A pot falls from a window.
- Before it fell, what was its speed?

$0 \mathrm{~m} / \mathrm{s}$

- What happened to its speed as it fell? It sped up or accelerated.
- What was happening to the speed the entire time it was falling?
It kept increasing
- Since the initial speed was
$0 \mathrm{~m} / \mathrm{s}$, the final speed can be expressed as :

$$
v_{f}=a t
$$

- The final speed of an object with a constant acceleration after a given amount of time has passed is also called the instantaneous speed.
- It is, as we said, for an object with an initial speed of $0 \mathrm{~m} / \mathrm{s}$,

$$
v_{f}=a t
$$

- The acceleration of gravity, \mathbf{g}, is $9.8 \mathrm{~m} / \mathrm{s}^{2}$
- For an object in free fall with an initial speed of $0 \mathrm{~m} / \mathrm{s}$, the final speed is:

$$
v_{f}=g t
$$

- If the initial speed of the falling object, $\boldsymbol{v}_{\boldsymbol{i}}$, is not zero, it needs to be added to get the instantaneous or final speed.

$$
v_{f}=g t+v_{i}
$$

(You may recall, this is the same as $v_{f}=a t+v_{i}$ that we learned earlier.)

A child drops a toy out of a window. It falls for 3.0 seconds. How fast is it going just before it hits?

- Step 1: Write the values of the variables
- $v_{i}=0 \mathrm{~m} / \mathrm{s}$

○ $t=3 \mathrm{~s}$
$\circ g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

- Step 2: Substitute values into the equation

$$
\begin{gathered}
v_{f}=g t+v_{i} \\
\circ v_{f}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~s})+0 \mathrm{~m} / \mathrm{s}=29.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

A child bounces a ball by throwing it down at $3.0 \mathrm{~m} / \mathrm{s}$. It hits the ground after 0.25 seconds. How fast is it going just before it hits?

- Step 1: Write the values of the variables
- $v_{i}=3.0 \mathrm{~m} / \mathrm{s}$
$\circ t=0.25 \mathrm{~s}$
○ $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Step 2: Substitute values into the equation

$$
\begin{gathered}
v_{f}=g t+v_{i} \\
\circ v_{f}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.25 \mathrm{~s})+3.0 \mathrm{~m} / \mathrm{s}=5.45 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

- In Sample Problem 1, we calculated that an object that falls for 3.0 seconds with an initial speed of $0 \mathrm{~m} / \mathrm{s}$ reaches a speed of $29.4 \mathrm{~m} / \mathrm{s}$.
- $v_{f}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})+0 \mathrm{~m} / \mathrm{s}=29.4 \mathrm{~m} / \mathrm{s}$
- Since the acceleration is constant, the average speed between any two measurements is the midpoint.
- It is found by adding the two values and dividing by two.
- The average speed of the falling object was:

$$
v_{\text {average }}=\frac{v_{f}+v_{i}}{2}=\frac{29.4 \mathrm{~m} / \mathrm{s}+0 \mathrm{~m} / \mathrm{s}}{2}=14.7 \mathrm{~m} / \mathrm{s}
$$

 Br (continued)

- Recall that average speed is also total distance divided by total time.

$$
v_{\text {average }}=\frac{d_{\text {total }}}{t}
$$

- This means that the distance fallen, d, can be determined as follows: $\boldsymbol{d}=\boldsymbol{v t}$ (omitting the subscripts)

- At an average speed of $14.7 \mathrm{~m} / \mathrm{s}$ for 3.0 s (last slide) this means: $\boldsymbol{d}=(14.7 \mathrm{~m} / \mathrm{s})(3.0 \mathrm{~s})=44.1 \mathbf{~ m}$

?

- So, we determined that: $\boldsymbol{d}=(14.7 \mathrm{~m} / \mathrm{s})(3.0 \mathrm{~s})=44.1 \mathrm{~m}$
- Physicists have another equation obtained by some fancy math that gives the same result: $d=1 / 2 a t^{2}$ or in this case $d=1 / 2 g t^{2}$
- $d=1 / 2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s})^{2}=44.1 \mathrm{~m}$
- Of course, if the object has an initial velocity, the distance it traveled due to that needs to be included:

$$
d=v_{i} t+1 / 2 a t^{2}
$$

(v) A P P

A penny falling from the Empire State Building hits the ground in 9.5 seconds. How far did it fall?

Step 1: Write the values of the variables

- $v_{i}=0 \mathrm{~m} / \mathrm{s}$
$\circ t=9.5 \mathrm{~s}$
○ $a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Step 2: Substitute values into the equation

$$
d=v_{i} t+1 / 2 a t^{2}
$$

$o d=(0 \mathrm{~m} / \mathrm{s})(9.5 \mathrm{~s})+1 / 2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(9.5 \mathrm{~s})^{2}=442 \mathrm{~m}$

P
 PDO 0 ?

A child bounces a ball with a downward speed of 2.0 m/s. If it starts to bounce back after 0.20 s, how far down was it thrown?
Step 1: Write the values of the variables

- $v_{i}=2.0 \mathrm{~m} / \mathrm{s}$
$\circ t=0.20 \mathrm{~s}$
○ $a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Step 2: Substitute values into the equation

$$
d=v_{i} t+1 / 2 a t^{2}
$$

$\circ d=(2.0 \mathrm{~m} / \mathrm{s})(0.20 \mathrm{~s})+1 / 2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.20 \mathrm{~s})^{2}=0.60 \mathrm{~m}$

