- When something moves, it changes position.
- Consider someone on a train reading a book.

- As the train passes, someone on the platform sees the book moving by.
- The passenger sees the book staying in place.
- Motion is relative to some reference point.

Dischmer Dis. Displaciamant

- You take the following walk from the Statue of Liberty (your reference point).
- First you walk 5 m north.
- Then you walk 5 m east.
- You head 5 m south.
- Finally, you go 5 m west.

- You walked a distance of 20 m , but you didn't go anywhere.
- Your distance from a reference point is your displacement.
- In this case, the displacement is 0 (zero).

Gulculating Spaod

- Examine the speed limit sign.
- Note the "MPH."
- MPH means speed in miles per hour.
o "Miles" refers to distance.
- "Per" means divided by.
o "Hour" refers to time.
- speed $=\frac{\text { distance }}{\text { time }}$ also $s=\frac{d}{t}$ or $v=\frac{d}{t}$
- Definition: speed = the distance per unit of time.

Nowe an Culcultating Spard

$\frac{d}{t}$

$$
\begin{aligned}
& d=v t ; \text { and } \\
& t=\frac{d}{v}
\end{aligned}
$$

- These are the equations used to do calculations with respect to speed.
- Problem 1: A 400. km trip takes 4 hours. What was the speed of the trip?

$$
v=\frac{\mathrm{d}}{\mathrm{t}}=\frac{400 . \mathrm{km}}{4 \mathrm{~h}}=100 \mathrm{~km} / \mathrm{h}
$$

- Problem 2: How long does it take to run a $500 . \mathrm{m}$ dash at a speed of $7.0 \mathrm{~m} / \mathrm{s}$?

$$
\mathrm{t}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{500 . \mathrm{m}}{7.0 \mathrm{~m} / \mathrm{s}}=71 \mathrm{~s}
$$

- Problem 3: How far can you go in 20 s at a speed of $35 \mathrm{~m} / \mathrm{s}$?

$$
d=v t=(35 \mathrm{~m} / \mathrm{s})(20 \mathrm{~s})=700 \mathrm{~m}
$$

Imaruha Spood/Lnostrantunnous Spood

- It's not likely that someone travelled at exactly $100 \mathrm{~km} / \mathrm{h}$ for 4 h as described in Problem 1.
- It is more reasonable to assume that $100 \mathrm{~km} / \mathrm{h}$ was the average speed or that it was the speed at some instant during the trip.
- Average speed = total distance divided by total time.
- Instantaneous speed = speed at a given instant in time.

Gruenting Spood

- A time-distance graph shows speed.

Time (s)	Distance (m)
10	29
20	61
30	90
40	122
50	148

- With time on the X-axis, and distance on the Y -axis, the slope is the speed.
- Plot the points.
- Draw the best line.
- Determine the slope

- $\mathrm{m}=\frac{105-0}{35-0}=3 \mathrm{~m} / \mathrm{s}$
- Velocity = speed and direction of an object.
- Speed is the magnitude or size of velocity.
o That is why the speed formula is often written:

$$
v=\frac{d}{t}
$$

- If the direction of a moving object changes, the velocity changes even if the speed remains the same.
- Speed and velocity are often used interchangeably even though speed is only part of velocity.

