

© Evan P. Silberstein, 2008

- Whether we are working, playing, or dreaming of the future, it seems we're obsessed with getting there fast.
- It's no wonder our commercials boast of vehicles that can get you from 0 to 100 in 5 seconds or less.
- This boast is not about speed. It is about acceleration.

- When a car goes faster, we think of it as "accelerating".
- When a car slows down, it is also accelerating.
- Slowing down and speeding up are similar because velocity is changing.
- Even changing direction changes the velocity, so it is also acceleration.
- Acceleration (a) is the change in velocity (Δv) over time (t).

- Examples of acceleration include:
o speeding up
o slowing down (negative acceleration or deceleration)

o changing direction

- Acceleration $=\frac{\text { change in velocity }}{\text { time }}$ or
- Acceleration $=\frac{\text { final velocity }- \text { initial velocity }}{\text { time }}$ or
- So $v_{f}=a t+v_{i}$
- Problem 1: A car travelling at $10 \mathrm{~km} / \mathrm{h}$ accelerates to $100 \mathrm{~km} / \mathrm{h}$ in 15 s . What is its acceleration?

$$
a=\frac{v_{f}-v_{i}}{t}=\frac{100 \mathrm{~km} / \mathrm{h}-10 \mathrm{~km} / \mathrm{h}}{15 \mathrm{~s}}=\frac{90 \mathrm{~km} / \mathrm{h}}{15 \mathrm{~s}}=6 \mathrm{~km} / \mathrm{h} / \mathrm{s}
$$

- Problem 2: A pot falls from a window and accelerates at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. What is its speed after 4 s ?

$$
v_{f}=a t+v_{i}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4 \mathrm{~s})+0 \mathrm{~m} / \mathrm{s}=39.2 \mathrm{~m} / \mathrm{s}
$$

- A time-speed graph ponng Plot the points. shows acceleration, when . Draw the best line. acceleration is constant.
- Determine the slope

Time (s)	Speed $(\mathrm{m} / \mathrm{s})$
1	9.7
2	19.7
3	29.4
4	39.6
5	48.8

- With time on the X-axis, and speed on the Y -axis, the slope is the acceleration.

$$
\text { - } m=\frac{34.3-0}{3.5-0}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

