## Newton's Second Law

## Mass and Acceleration

- In which of the two workout routines shown will the weightlifter be able to pump the weights up and down quicker?
- Why?
- Using the same force, the weightlifter is able to accelerate (change the velocity of) the smaller mass more.


## The Second Law

- Newton's Second Law $=$ the acceleration of an object is equal to the net force divided by the mass

$$
\text { acceleration }=\frac{\text { net force }}{\text { mass }}
$$

$$
a=\underline{E}_{\text {net }}
$$

- In other words, as you observed earlier, the larger the mass is, the smaller the acceleration is that it gets from a given force.


## Calculational Formulas

- If:


## acceleration $=$ <br> net force <br> mass

$$
\boldsymbol{a}=\underset{\boldsymbol{m}}{\boldsymbol{F}_{\text {net }}}
$$

- Then:

$$
F_{n e t}=m a
$$

- Units of force
- Newtons ( N )
- $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$


## Sample Problem

What is the acceleration of a 10 kg box with a net force of 5 N acting on it?

- $a=\boldsymbol{F}_{\boldsymbol{m} \text { nt }}^{\boldsymbol{m}}$
- $a=\frac{5 \mathrm{~N}}{10 \mathrm{~kg}}$
$a=\frac{5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{10 \mathrm{~kg}}=0.5 \mathrm{~m} / \mathrm{s}^{2}$


## Acceleration of Gravity.

Gravity = force of attraction between objects due to mass

- Weight = the size of the gravitational attraction due to gravity
- acceleration due to gravity (g): $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Weight (W): W = mg or $\mathrm{m}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right.$ )

Note: $W=m g$ is the same as $F=m a$

- Weight vs mass
- Weight is the downward force of gravity on an object.
- It depends on location.
- Mass is the amount of matter in an object. It is not effected by location.


## Gravity Problem

A student has a mass of 60 kg . What is the student's weight?

- $\mathrm{F}=\mathrm{ma}$ or $\mathrm{W}=\mathrm{mg}$
- $W=(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$=588 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=588 \mathrm{~N}$

