Pascal's Princtple
hywailloin

## Foree and Phase

- When you press on a solid, the particles do NOT move.
- When you press on a liquid the particles DO move.

- When you press on a liquid, it moves, ... . but what if the liquid is in a closed bottle with nowhere to go?
- This can be examined by making a Cartesian diver from a soda bottle with water and a medicine dropper.
- When you squeeze on the soda bottle, the dropper dives.
- This is because as the liquid presses on the bubble in the medicine dropper compressing it, and making room for the water.


## The

- A liquid cannot be compressed.
- The particles of a liquid can move from place to place.
- When pressure is exerted on a liquid, particles of the liquid exert pressure on neighboring particles.
- Pascal's principle follows from these facts.

Pascal's principle = when pressure is applied to a liquid in a closed container, the pressure is transmitted equally throughout the liquid.

## Applieations

## Force Pump

## 

## Hydraulic Lift

## Foree Pump

- Force pump = when pressure is applied to a liquid in a container with one opening, the liquid will come out of the opening.
- Examples:
- Heart
- Toothpaste tube


## Frydraulie T tit

- In a hydraulic lift:
- Pressure is applied to a piston $\left(\mathrm{P}_{1}\right)$
- Pressure is transmitted to another piston $\left(P_{2}\right)$ through a fluid

- $P_{1}=P_{2}$ according to Pascal's Principle
- Since pressure is force per unit area ( $P=\frac{F}{A}$ ), and $P_{1}=P_{2}, \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}$.
- If the surface area of the second piston is greater, the force is magnified.

A $3,000 \mathrm{~N}$ forcer is exerted on $2.0 \mathrm{~m}^{2}$ piston in order to raise a car on a $60.0 \mathrm{~m}^{2}$ piston of a hydraulic lift. How heavy is the car?

- Step 1: Identify your variables

$$
\begin{array}{ll}
F_{1}=3,000 \mathrm{~N} & F_{2}=? \\
A_{1}=2.0 \mathrm{~m}^{2} & A_{2}=60.0 \mathrm{~m}^{2}
\end{array}
$$

- Step 2: Substitute into the equation

$$
\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \text { so } \frac{3,000 \mathrm{~N}}{2.0 \mathrm{~m}^{2}}=\frac{F_{2}}{60.0 \mathrm{~m}^{2}}
$$

- Step 3: Solve

$$
F_{2}=\frac{(3,000 \mathrm{~N})\left(60.0 \mathrm{~m}^{2}\right)}{2.0 \mathrm{~m}^{2}}=90,000 \mathrm{~N}
$$

