Cumonery prictre

© Evan P. Silberstein, 2008

- Try the following experiment:

1. Hang two pieces of paper straight down in front of you.
2. Blow hard between the two pieces of paper.
3. Notice what the pieces of paper do.

- What happens?

When you blow between two pieces of paper hanging down in front of you, they move together.

- In order for the two pieces of paper to start moving together, there must be a net force in the direction of the movement.
- Where does this force come from?
- The only forces acting on the pieces of paper are:
- gravity pulling them down,
- your hands holding them up, and
o air pressure pushing in all directions.
- All these forces are balanced before you start blowing between the pieces of paper (which is why the paper doesn't move until you blow).
- The direction of movement of the pieces of paper shows that the air pressure must become lower between the pieces of paper where you are blowing.

Bernoulli's principle $=$ when the speed of a fluid wrive increases, the pressure exerted by the fluid decreases.

- When you blow between two pieces of paper, the air between the papers increases speed.
- As a result, the pressure decreases.
- Since the pressure is lower between the pieces of paper
 than on the outside, the papers move together.
- Wind blowing past a chimney helps pull the smoke up because the air pressure becomes lower above the chimney than it is inside.

- Wind blowing past a house during a hurricane can cause the roof to come off because the air pressure above the roof becomes lower than the pressure in the house.

- And . . .

- Air moving quickly over a plane's wing helps to lift the plane into the air by reducing the air pressure over the wing.
- Look at the tornado pictured to the right.
- Why is the house leaning and twisting before the tornado even reaches it?
- As predicted by Bernoulli's Principle, the air pressure around the house is reduced by the storm spinning rapidly near by.

