$\qquad$
$\qquad$
$\qquad$

## Accelerationi

Whether you are speeding up, slowing down, or just changing direction, any change in velocity is acceleration. When an object falls from a window, it is accelerating. When a plane lands and comes to a stop, it is accelerating. As the earth zips around the sun it is accelerating. A car that goes from zero to $50 \mathrm{~km} / \mathrm{h}$ in 5 seconds is accelerating. A car that goes from zero to $100 \mathrm{~km} / \mathrm{h}$ in 5 seconds is also accelerating. The accelerations are not equal, however. A car that goes from zero to $100 \mathrm{~km} / \mathrm{h}$ in 5 seconds has a greater acceleration than one that goes from zero to $50 \mathrm{~km} / \mathrm{h}$ in 5 seconds. Acceleration is the change in velocity over time. Acceleration, time, and the final velocity can be calculated as shown below. $a=\frac{\Delta v}{t}=\frac{v_{f}-v_{i}}{t} ; t=\frac{v_{f}-v_{i}}{a} ;$
and $\quad v_{f}=v_{i}+a t$

- $a=$ acceleration
- $\Delta v=$ change in velocity
- $v_{f}=$ final velocity
- $v_{i}=$ initial velocity


Inertia Man: Resists acceleration unless he's rushing to bed.

## Sample Problem 1

What is the acceleration of a car that speeds up from $85 \mathrm{~km} / \mathrm{h}$ to $100 \mathrm{~km} / \mathrm{h}$ in 3 seconds?
$a=\frac{v_{f}-v_{i}}{t}$
$a=\frac{100 \mathrm{~km} / \mathrm{h}-85 \mathrm{~km} / \mathrm{h}}{3 \mathrm{~s}}$
$=5 \mathrm{~km} / \mathrm{h} \cdot \mathrm{s}$

Sample Problem 2
A falling brick passes a window at a speed of $29.4 \mathrm{~m} / \mathrm{s}$. How fast will it be going 2 seconds later if the acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ?

$$
\begin{aligned}
v_{f} & =v_{i}+a t \\
v_{f} & =29.4 \mathrm{~m} / \mathrm{s}+\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s}) \\
& =49.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Sample Problem 3

How long does it take to stop a car going $88 \mathrm{~km} / \mathrm{h}$ if it accelerates at a rate of $-5 \mathrm{~km} / \mathrm{h} / \mathrm{s}$ ?
$t=\frac{v_{f}-v_{i}}{a}$
$t=\frac{0 \mathrm{~km} / \mathrm{h}-88 \mathrm{~km} / \mathrm{h}}{-5^{\mathrm{km} / \mathrm{h} \cdot \mathrm{s}}}$
$=17.6 \mathrm{~s}$

Answer the questions below using the equations above.

1. How fast will a runner be going if she speeds up from $2.7 \mathrm{~m} / \mathrm{s}$ by accelerating at a rate of $0.5 \mathrm{~m} / \mathrm{s}^{2}$ for 6 s ?
2. How long does it take for a car going $40 \mathrm{~km} / \mathrm{h}$ to speed up to $75 \mathrm{~km} / \mathrm{h}$ with an acceleration of $10 \mathrm{~km} / \mathrm{h} / \mathrm{s}$ ?
3. What is the acceleration of a car that goes from a stop to $88 \mathrm{~km} / \mathrm{h}$ in 4.0 s ?
