Name

CHEMICAL FORMULAS AND EQUATIONS

Date

Period

Stochiometry

Stoichiometry - calculations based on quantitative relationships in a balanced chemical equation

- ★ Assumptions of stoichiometry
 - \Rightarrow Reaction has no side reactions
 - \Rightarrow Reaction goes to completion
 - \Rightarrow The reactants are completely consumed
- ★ Mole problems

<u>Sample Problem</u> How many moles of oxygen are liberated when 0.4 moles of potassium chlorate decomposes?								
Step 1:	Write a balanced equation and determine the mole ratios from the equation	$2 \text{ KCIO}_3 \rightarrow 2 \text{ KCI} + 3 \text{ O}_2$						
		mole ratio	2	2	3			
Step 2:	Identify the known and the unknown	moles	<u>known</u> 0.4		<u>unknown</u> x			
Step 3:	Set up a proportion and solve for the unknown	• $\frac{2}{0.4mol} = \frac{3}{x}$ • $2x = 1.2mol$ • $x = 0.6mol$						

Answer the questions below by circling the number of the correct response

1. 2.	Given the reaction: $N_2 + 3H_2 \rightarrow$ nitrogen are needed to produce (1) 1 (2) 2 Given the reaction: 2CO + O ₂ \rightarrow	8 moles of ammonia? (3) 3 (4) 4	4.	Given the reaction: 2Na + 2ł What is the total number of m moles of sodium react comple (1) 1 (2) 2	oles of hydrogen produced when 4
	What is the minimum number of one mole of CO ₂ ? (1) 1.0 (2) 2.0	moles of O_2 required to produce (3) 0.25 (4) 0.50	5.	Given the reaction: N ₂ (g) + 3H What is the ratio of moles of H produced? (1) 1:2 (2) 2:3	H ₂ (g) ≠ 2NH ₃ (g) H ₂ (g) consumed to moles of NH ₃ (g) (3) 3:2 (4) 6:6
3.	 Given the reaction; 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O What is the total number of moles of NaOH needed to react completely with 2 moles of H₂SO₄? (1) 1 (3) 0.5 (2) 2 (4) 4 		 6. Given the reaction: (NH₄)₂CO₃ → 2NH₃ + CO₂ + H₂O What is the minimum amount of ammonium carbonate that reacts to produce 1.0 mole of ammonia? (1) 0.25 mole (3) 17 moles (2) 0.50 mole (4) 34 moles 		