Chemistry: Form N8.3A	Name	
SOLUTIONS	Date	Period

Colligative Properties

Aim

• to explain boiling point elevation and freezing point depression

Notës

- ★ Colligative properties effect of solute on solvent due to the number of particles
 - ★ Nature of colligative properties
 - ★ Not affected by the properties of the solute, but only by the number of particles
 - Electrolytes dissociate producing more particles per mole than nonelectrolytes
 therefor electrolytes produce larger colligative affects than nonelectrolytes
 - ★ Examples
 - ★ Boiling point elevation nonvolatile solute reduces the vapor pressure of water, raising the boiling point
 - \star molal boiling point elevation = 0.512°C/m
 - ★ Freezing point depression the presence of solute interferes with crystallization, lowering the freezing point
 - \star molal freezing point depression = 1.86°C/m

Answer the questions below by circling the number of the correct response

- A pupil dissolved 180.00 grams of C₆H₁₂O₆ in 1,000.0 grams of water and then heated the solution until it boiled. What was the boiling point of the C₆H₁₂O₆ solution? (air pressure is 1 atmosphere) (1) 98.96°C (2) 100.52°C (3) 99.48°C (4) 101.04°C
- One mole of an ionic salt will usually depress the freezing point of water to a greater extent than one mole of a soluble organic substance because the ionic salt
 - (1) will produce more particles in solution
 - (2) is more easily hydrated
 - (3) has a higher melting point
 - (4) has a higher molecular mass

The solutions described in questions 3 - 9 have the same concentration of dissolved solute.

- Which solution would have the lowest freezing point? (1) NaCl(aq)
 (2) HCl(aq) (3) KCl(aq) (4) CaCl₂(aq)
- 4. Which solution will have the lowest freezing point?
 (1) CH₃COOH (2) C₆H₁₂O₆ (3) C₂H₅OH (4) H₂SO₄
- Which water solution will have the lowest freezing point? (1) BaCl₂ (2) NaCl (3) C₃H₅(OH)₃ (4) CH₃COOH
- Which water solution will have the lowest freezing point?
 (1) CaCl₂ (2) C₁₂H₂₂O₁₁ (3) NaCl (4) CH₃COOH

- 7. Which solution will have the highest boiling point?
 (1) KNO₃
 (3) Mg(NO₃)₂
 (2) Al(NO₃)₃
 (4) NH₄NO₃
- 8. Which solution has the lowest freezing point?
 (1) acetic acid
 (3) nitrous acid
 - (2) potassium hydroxide (4) ammonium hydroxide
- 9. Which water solution will have the highest freezing point?
 (1) CaCl₂
 (2) NaCl
 (3) C₁₂H₂₂O₁₁
 (4) CH₃COOH
- If 46.0 grams of ethanol C₂H₅OH are completely dissolved in 1,000. g of water, the freezing point of the solution in Celsius is most nearly (1) 3.72 (2) -1.86 (3) 1.86 (4) -3.72
- 11. The solution with the lowest freezing point would be produced when 1.0 gram of C₆H₁₂O₆ is dissolved in

 (1) 18 grams of H₂O
 (3) 180 grams of H₂O
 (2) 100 grams of H₂O
 (4) 1,000 grams of H₂O
- 12. What is the total number of grams of C₆H₁₂O₆ that must be dissolved in 1,000 grams of water to raise the boiling point 0.52°C? (boiling point elevation constant of H₂O = 0.52°C) (1) 9 (3) 18 (2) 90 (4) 180