Bonding

What's the big attraction?

© Evan P. Silberstein, 2007

The Nature of Bonding

- A chemical bond is the force of attraction between the atoms of a compound.
 ... but what causes the attraction?
- Consider the charges of the subatomic particles:
 - Electrons? Negative
 - Protons? Positive
 - Neutrons? Neutral
- So, which part of one atom is attracted to which part of another atom?

• The electrons of one atom are attracted to the protons of another.

 When atoms combine, there is a tug of war over the <u>valence</u> electrons.

○ Valence electrons = outer electrons

- The outcome of a tug of war depends upon the contestants:
 - If one team pulls hard and the other does not, the team that pulls hard wins.
 - If both teams pull equally, you have a stalemate where both teams end up holding on to the same rope.
- The result is similar with a tug of war over electrons:
 - If one atom has a strong pull on electrons and the other has a weak pull on electrons, the atom with the strong pull gains electrons, and the one with the weak pull loses.
 - If two atoms pull hard on the same electrons, and neither lets go, they end up sharing those electrons.

An Example of Unequal Pulls

- Imagine a tug of war between sodium and chlorine. Note their locations on the *Periodic Table*.
 - How is sodium classified?
 Metal
 - How is chlorine classified?
 Nonmetal
 - What would happen during a tug of war over valence electrons between sodium and chlorine?
 Sodium would lose its valence electron, and chlorine would gain.

• Draw Bohr-Rutherford diagrams of sodium and chlorine.

• Fill in the table below:

Element	odium	Chlorine
Nuclear Charge	411	+17
Charge on Electrons	× <u>-11</u>	× -17
Total Charge	0	0

 Now draw Bohr-Rutherford diagrams of sodium and chlorine after the electron transfer.

• Fill in the table below:

Element	odium	Chlorine
Nuclear Charge	411	+17
Charge on Electrons	× - <u>10</u>	v - <u>18</u>
Total Charge	÷1	- <u>1</u>

and the Bond is ...

- As a result of transferring electrons, the charge on the sodium becomes +1 while the charge on the chlorine becomes -1
 Na⁺ and Cl⁻
- These charged particles are called . . . ions.
- The ions become bonded because . . . they are oppositely charged.
- The attraction between oppositely charged ions is called an **lonic Bond**.

Sodium Chloride: An Example

• The electron configurations of sodium and chlorine change when they combine:

○ Na: 2-8-1 + Cl: 2-8-7 \rightarrow Na⁺: 2-8 + Cl⁻: 2-8-8

- The charges of sodium and chlorine change when they combine:
 - \circ Na⁰ + Cl⁰ → Na⁺¹ + Cl⁻¹
 - The charge on the ion is the same as its oxidation state or valence.
 - The sodium and chlorine are attracted because they are oppositely charged.
 - The charge on the compound is zero.

Ionic bonding in

Summary of Ionic Bonding

- The electrons of one atom are attracted to the protons of another.
- Metals hold onto electrons loosely while nonmetals hold onto electrons tightly.
- Metals lose electrons and nonmetals gain electrons in such a way that they complete their outer shells.
 - Atoms that gain or lose electrons become electrically charged.
 - Charged atoms are called ions.
 - Metals become positively charged ions called *cations* by losing electrons.
 - Nonmetals become negatively charged ions called *anions* by gaining electrons.
- Metal cations and nonmetal anions become bonded because they are oppositely charged.

An Example of Equal Pulls

- Imagine a tug of war between two hydrogen atoms to form a diatomic molecule of hydrogen (H₂)
 - How does the pull of one hydrogen atom on electrons compare to the pull of another hydrogen atom on electrons? It is the same.
 - What would happen during a tug of war over valence electrons between two hydrogen atoms?
 Neither would let go. They would share.

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.
 - How many electrons does each hydrogen need to complete its outer shell? Two

- Sharing valence electrons is called covalent bonding.
- When it comes to covalent bonding, "sharing is pairing."
 - Unpaired electrons pair in such a way that each atom completes its outer shell.
- Draw electron dot diagrams for each of the hydrogen atoms in the hydrogen molecule.

 How many electrons does each hydrogen need to complete its outer shell? Two

• The hydrogens are bonded because they are holding on to the same electrons.

Determining Bond Type

- It is obvious that sodium and chlorine bond ionically, because sodium is a very active metal, and chlorine is a very active nonmetal.
- It is obvious that diatomic molecules such as H₂ contain covalent bonds because the two identical atoms have the same pull on electrons.
- But what type of bond is found between hydrogen and oxygen in water?
 - Oxygen is a nonmetal.
 - Hydrogen, being at the top of the family, is a metalloid.
 - They are not as different as sodium and chlorine, nor are they as similar as two hydrogens.
- Some measure is needed to show how different atoms' pulls on electrons are. It is electronegativity.

Electronegativity

Metals have low electronegativities.
Nonmetals have high electronegativities.
Electronegativity difference is a good indicator of how different the pull on electrons is.

- The most metallic element is . . . francium.
 Its electronegativity is . . . 0.7, the lowest.
- The most nonmetallic element is . . .flourine.
 Its electronegativity is . . . 4.0, the highest.
- The electronegativity difference is . . . 3.3 This is the largest electronegativity DIFFERENCE POSSIBLE.

Electronegativity Difference

- The largest electronegativity difference possible is that between francium and fluorine. It is 3.3
 This represents the greatest ionic character.
- The smallest electronegativity possible is that found within diatomic molecules or between other very similar atoms. It is 0

This represents the least ionic character.

- The midpoint is about ... 1.7
 - O This represents 50 percent ionic character.
 - It is the dividing line between ionic and covalent.
 - An electronegativity difference of 1.7 or more represents an ionic bond. Less than 1.7 is covalent.

• Fill in the table below to determine the bond type in water:

Element	Electronegativity
Oxygen	3.4
Hydrogen	2.1
Electronegativity Difference	1.3

- The electronegativity difference is less than 1.7
- The bonds between hydrogen and oxygen are covalent.

Comparing Covalent Bonds

- Not all covalent bonds are created equal.
 - In the bond between chlorine atoms in a chlorine molecule (Cl_2), the electronegativity difference is 0.0, and the atoms share equally.
 - In a hydrogen chloride (HCl) molecule, the electronegativity difference is *not* 0.0, and the atoms don't share equally. Fill in the table below:

Element	Electronegativity
Chlorine	3.2
Hydrogen	2.1
Electronegativity Difference	1.1

- The bond is covalent, but the atoms don't share equally. Chlorine is more electronegative. It has a stronger pull on electrons.
 - The shared electrons will be displaced closer to the chlorine.
 - This will make the charge on the chlorine side of the bond slightly negative, and on the hydrogen side of the bond slightly positive.

Types of Covalent Bonds

 In hydrogen chloride the hydrogen side of the bond is slightly positive, and the chloride side of the bond is slightly negative.

+H-CI-

- The earth has opposite ends just like the hydrogen chloride molecule. The opposite ends of the earth are called ... poles.
- The adjective used to describe the bears living at the poles is . . . polar.
- Bonds with oppositely charged ends are also called polar.

Classifying Bonds

- There are three types of chemical bonds:
 - o ionic,
 - polar covalent, and
 - nonpolar covalent
- Bond type is determined by electronegativity difference.

