Chemical Formulas

How to Write and Interpret Them

© Evan P. Silberstein, 2007

Interpreting Chemical Formulas

Consider the formula below:

Fe

parentheses dot coefficient

subscripts

- The formula has subscripts, parentheses, a coefficient, and a dot.
- Each of these has a function.

Subscripts

• A subscript is a small number written to the lower right of the symbol.

subscripts

Fe

- It shows the number of atoms or *polyatomic ions* in a formula.
- A subscript 1 (one) is never written. It is understood.
- How many iron atoms are in the formula above?

Parentheses

 Parentheses are written around *polyatomic ions* when there are more than one of the ion.
 parentheses

Polyatomic ions are charged groups of atoms.

 $(SO_A)_2 \circ 9H_2O$

 Some polyatomic ions are found on the <u>Reference Tables</u>.

Fen

 How many sulfate ions are in the formula above? 3 How many sulfur atoms? 3 How many oxygen atoms are in the sulfates? 12

Coefficients

Coefficients are large numbers written to the left of the formula.
 coefficient

 Normally, they only show the number of formula units and are not part of a formula.

 $Fe_{7}(SO_{A})_{3}$, $9H_{2}O$

The formula above is for a hydrated crystal. A formula unit iron III sulfate [Fe₂(SO₄)₃] is associated with 9 molecules of water.

The Dot

 The dot is used as a separator between two substances in a formula. dot

Mathematically, the dot acts like a plus sign.

 $Fe_2(SO_A)_3$, 9H, 0

- A plus sign has another function in chemistry, so it cannot be used in a formula.
- How many oxygen are in Fe₂(SO₄)₃-9H₂O? 21

Counting Atoms

How many atoms of each element are in the formula below and what is the total number of atoms:
 5Fe₂(SO₄)₃,9H₂O

Element	Coefficient	×	Subscript	×	Parentheses Subscript	=	Sub total	Total
Fe	5	×	2	×		=		10
S	5	×	1	×	3	=		15
	5	×	4	×	3	=	60	
Ο	5 × 9	×	1			=	45	
						=		105
н	5 × 9	×	2			=		90
TOTAL								220

Bonding Ratios What kind of bond does sodium form with chlorine? It forms an ionic bond.

• Draw a Bohr diagram of each atom.

17 P

18 N

11 P

12 N

Which atom loses electrons and which one gains?
 Sodium loses and chlorine gains.

11 P

12 N

CI

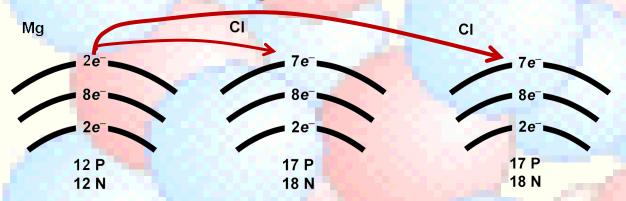
17 P

18 N

- How many electrons are transferred?
 1 electron is transferred.
- Draw a Bohr diagram of each ion.

More on Bonding Ratios

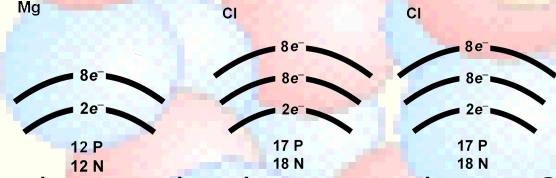
What is the charge on each ion?


Na⁺	CI ⁻ 8e ⁻	Element	Sodium	Chlorine
8e-	8e-	Nuclear Charge	÷11	÷17
2e-	2e-	Charge on Electrons	-10	-18
11 P 12 N	17 P 18 N	Total Charge	÷1	-1

Na is +1. Cl is - 1.

- How does the charge on the ion compare to the ion's oxidation state?
 The charge is the same as the oxidation state.
- What is the total charge on the compound?
- What is the sum of the oxidation states.

 Bonding Ratios for other lons
 Sodium and chlorine bond in a 1 to 1 ratio by transferring 1 electron. What happens with magnesium and chlorine?


Draw Bohr diagrams.

- Magnesium has two electrons to lose, but chlorine has room to gain only one.
- The solution is to bond to a second chlorine.

More about other lons

Draw Bohr diagrams of the magnesium and chloride ions.

- What are the charges on the ions? Mg = +2; Cl = -1
- What are the oxidation states of the ions?
 Mg = +2; Cl = -1
- What is the formula for the compound? MgCl₂
- What is the sum of the oxidation states of the compound? Zero

Covalent Bonds are Similar

- Draw electron dot diagrams of hydrogen and oxygen.
- Hydrogen has one electron to share. Oxygen needs two.
- The solution is to bond two hydrogens to one oxygen to form water.
- What are the oxidation states of hydrogen and oxygen? H = +1; O = -2
- What is the sum of the oxidation states in water? Zero

Pictures vs Oxidation States

- A picture of an atom can show how many electrons are lost, gained, or shared.
- An element's oxidation state also tells the number of electrons lost, gained, or shared.
- Just as it is possible to tell how atoms combine using pictures, it is also possible using oxidation states.
- The trick is to make sure the oxidation states add up to zero as we have already seen.

Using Oxidation States

- Example 1: Hydrogen and chlorine
 H⁺¹ Cl⁻¹
 +1 -1 = 0
 • The formula is HCl
- Example 2: Barium and fluorine

+2 -2 = 0

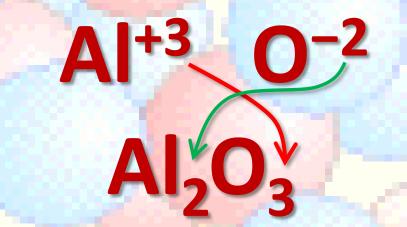
F-1

F-1

Ba⁺²

○ The formula is BaF₂

• Example 3: Aluminum and oxygen


Al⁺³ O^{-2} Al⁺³ O^{-2} O^{-2} +6 -6 = 0 • The formula is Al₂O₃

Getting More Sophisticated

- It isn't necessary to go back and forth by trial and error until the sum of the oxidation states is zero.
- Find the lowest common multiple instead.
- What is the lowest common Al 0⁻²
 multiple of 3 and 2? 6
 x2 x3
- How many 3's are in 6?
- How many 2's are in 6 3
 The formula is Al₂O₃.

The Crossover Rule

• Crossing over gives the same result as finding the lowest common multiple.

More Crossover Rule The general rule is: X+a V-b

- Exceptions
 - equal and opposite oxidation
 states add up to zero so the ratio is 1 to 1
 - Mg⁺² + O⁻² → MgO
 - $AI^{+3} + P^{-3} \rightarrow AIP$
 - oxidation states that are multiples of each other must be reduced to lowest terms: $C^{+4} + O^{-2} \rightarrow CO_2 \text{ NOT}$ C_2O_4
- polyatomic ions
 - see <u>Table</u> for oxidation state
 - enclose in parentheses if there is more than one

• $NH_4^{+1} + CO_3^{-2} \rightarrow (NH_4)_2CO_3$