BALANCING EQUATIONS

Conservation of Mass

© Evan P. Silberstein, 2007

CONSERVATION OF MASS

- In 1789, Antoine Lavoisier demonstrated the chemical principle known as the law of conservation of mass.
- According to the law of conservation of mass, during a chemical reaction matter is neither created nor destroyed.

• As a consequence, during a chemical reaction the mass does not change.

CHEMICAL EQUATIONS AND CONSERVATION

- Chemical equations should show conservation of mass.
- Example:

AgNO ₃ (aq)	+ NaCl(aq)	\rightarrow NaNO ₃ (aq)	+ AgCl(s)
AgNO ₃	NaCl	NaNO ₃	AgCl
Ag = 108 × 1 = 108	Na = 23 × 1 = 23	Na = 23 × 1 = 23	Ag = 108 × 1 = 108
$N = 14 \times 1 = 14$	Cl = 35 × 1 = <u>35</u>	N = 14 × 1 = 14	$CI = 35 \times 1 = 35$
$O = 16 \times 3 = 48$	58	O = 16 × 3 = <u>48</u>	143
170	2	85	
The second			

228

CHECKING FOR CONSERVATION

- Consider the equation for the formation of water: H₂ + O₂ → H₂O
- Does it show conservation? $H_2 + O_2 \rightarrow H_2O$ **2 + 32 ≠ 18**
- Why doesn't it show conservation?
- Consider the drawing of the reaction below:

An oxygen atom is missing!

BALANCING THE EQUATION

 Since there is an oxygen missing on one side of the equation, the equation is not balanced.

 $2H_2 + O_2 \rightarrow 2H_2O$

• The only way to get an additional oxygen on the product side is to add another water molecule.

(H)H

- Adding another water molecule puts two extra hydrogen atoms on the product side.
- The only way to even things out is to put another hydrogen molecule on the reactant side.
- This result can be shown in the equation with coefficients. This makes the equation balanced.

BALANCING FOR CONSERVATION

- The unbalanced equation does not show conservation of mass.
 - $H_2 + O_2 \rightarrow H_2O$

2 + 32 ≠ 18

• The balanced equation does show conservation of mass.

 $2H_2 + O_2 \rightarrow 2H_2O$ 2(2) + 32 = 2(18)36 = 36

BALANCING IS COUNTING

- If an equation is balanced, it shows conservation of mass. Checking the masses is unnecessary.
- Balancing is just a matter of counting the number of each type of atom, and making sure it is the same on both the reactant side and product side of the equation.
- If the equation is unbalanced, balance it by using coefficients.

(NOTE: Think of coefficients as multipliers.)

EXAMPLES

State whether each of the following is *balanced* or *unbalanced*. If it is unbalanced, balance it.

- $_C + _O_2 \rightarrow _CO_2$ Balanced
- $N_2 + 3H_2 \rightarrow 2NH_3$
- $\underline{2}AI + \underline{6}HCI \rightarrow \underline{2}AICI_3 + \underline{3}H_2$
- $_BaCl_2 + \underline{2}AgNO_3 \rightarrow _Ba(NO_3)_2 + \underline{2}AgCl$
- $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$