

The Mathematics of Chemistry

© Evan P. Silberstein, 2007

Introducing Woles

- The mole is a very useful concept in chemistry. It is a quantity, just as a dozen is a quantity, but it is much more than a dozen.
- The number of objects in a mole is 6.02 × 10²³.
- The importance of the mole as a quantity in chemistry comes from the fact that all moles, just like all dozens, have the same number of particles.

A mole is a formula mass expressed in grams.
0 1 mole = 1 gram formula mass (1 mol = 1 GFM)

Substance	Formula Mass	Gram Formula Mass
Carbon	12 amu	12 g
Sodium Chloride (NaCl)	58 amu	58 g
Glucose (C ₆ H ₁₂ O ₆)	180 amu	180 g

 Atomic mass units are too small to measure on a laboratory balance, but grams are not.

• The gram formula mass (GFM) is the number of grams per mole.

• GFM =
$$\frac{g}{mol}$$

• g = GFM × mol
• mol = $\frac{g}{GFM}$

 Basic mole calculations can be done with these equations or by the factor label method.

What is the mass of 2 moles of sodium thiosulfate?

 Step1: Find the formula mass of the substance and express it in grams

<u>Na₂J₂</u>	<u>_</u> 3			
Na =	23	×	2	= 46
S =	32	×	2	= 64
O =	16	×	3	= <u>48</u>
				158 g

- Step 2: Apply the factor label method (2 mol) $\frac{158 \text{ g}}{1 \text{ mol}} = 316 \text{ g}$
- or Step 2: Apply the formula
 - $g = GFM \times moles$
 - = 158 g/_{mol} × 2 mol
 - = 316 g

Na S O

How many moles are in 390g of calcium chloride?

 Step1: Find the formula mass of the substance and express it in grams

CaCl₂

Ca =	40	×	1	= 40
CI =	35	×	2	= <u>70</u>
				110 g

Step 2: Apply the factor label method

 (290 g) 1 mol 110 g
 and 110 g

or Step 2: Apply the formula

mol =
$$\frac{g}{GFM}$$

mol = $\frac{290 \text{ g}}{110 \text{ g/mol}}$ = 3.5 mol