SCIENTIFIC NOTATION

2,543 = 2,543 X 10°

Writing very big or very small numbers conveniently

© Evan P. Silberstein, 2007

DEALING WITH EXTREME NUMBERS

- 2,000,000,000,000 picometers is an awfully large number. (Can you even read it?!)
 - You can change the prefix. Convert to kilometers!
 2,000,000,000,000 pm = 2 km
 - o Whew! That's better!!
- 2,000,000,000,000 kilometers is a big number with an even bigger value!
 - What do you do with that? Use a bigger, better prefix?
 You could do that, or you could...

USE SCIENTIFIC NOTATION

DEFINITION AND EXAMPLES

- Definition number expressed as two factors,
 the first being a number between 1 and 10 (1 or more, but less than 10), often called the mantissa,
 multiplied by a second being a power of 10 (10 raised to any whole number ... 10^x).
- Examples:

○ 2,175 = **2.175** × 1⁄0³

○ 0.000314 = **3.14** × **10**⁻⁴

INCREDIBLE 10°

• Definition: 10⁰ = 1

- Multiplying by 1 (or 10⁰) does not change a number's value.
- 2,543 = 2,543 × 10⁰
- Any number can be written as a multiple of 10⁰.

CONVERTING TO SCIENTIFIC NOTATION

- Imagine every number written as a multiple of 10⁰.
- Convert the mantissa to a number between 1 and 10 by moving the decimal.
 - [*Note*: When there is no expressed decimal, the decimal is considered to be at the right of the number.]
- For every place you move the decimal in the mantissa, you have to change the power of 10 by 1.

• $2,543 = 2,543 \times 10^{\circ}$

- To get a number between 1 and 10 from 2543, you need to move the decimal three places to the left, making the number smaller.
- You compensate for making the mantissa three decimal places smaller by making the exponent bigger by three (0 + 3 = 3).

2,543 = 2,543 × 10⁰ = 2.453 × 10³

CONVERTING TO STANDARD NOTATION

Convert 2.78 × 10⁻³ to standard notation

- Reverse the process of converting to scientific notation by converting to a multiple of 10⁰.
- For every change of 1 that you make to the exponent, you need to move the decimal in the mantissa one place.

Start with 2.78 × 10⁻³

- To get the exponent back to zero, you need to increase it by three, making the number bigger.
- Compensate by moving the decimal three places to the left to reduce the product to its original value. (Use zeros as place holders.)

 $2.78 \times 10^{-3} = 0.00278$

CALCULATIONS WITH SCIENTIFIC NOTATION

Do the following calculations and develop a rule for scientific notation

- Multiply 0.002 by 0.04.
 - Convert each of the numbers and the answers to scientific notation.
 - Develop a rule for multiplication.
- Add 125 and 27.
 - Convert each of the numbers and the answers to scientific notation.
 - Develop a rule for addition.

The results

- $0.002 \times 0.04 = 0.00008$
 - \circ (2 × 10⁻³)(4 × 10⁻²) = 8 × 10⁻⁵
 - <u>Rule</u>: Multiply the mantissas and add the exponents.
- 125 + 27 = 152
 - $\circ 1.25 \times 10^{-2} + 2.7 \times 10^{-1}$ = 1.52 × 10⁻²
 - <u>Rule</u>: Convert all values to the same power of ten before adding.

CALCULATION RULE SUMMARY

Rules for Multiplication and Division

 Multiplication

 Multiply the mantissas and add the exponents

nd Rules for Addition and Subtraction

- Addition
 - Convert all values to the same power of ten before adding

- Division
 - Divide the mantissas and subtract the exponents

- Subtraction
 - Convert all values to the same power of ten before subtracting