ERRODRE CR

The Ugly Truth Behind Even the Most Careful Measurements

- Measuring instruments have limitations:

The length of this object falls between lines of the ruler.

- It is necessary to estimate one place beyond the finest measurement of the measuring device to get the object's length. This is always the case.
- As a result, there are always errors of measurement.

MOT ALL ERROURE ANRE CREMTED EOURL

Consider the following two errors:

- You fly from New York to San Francisco.

- Your plane is blown off course by 3 cm .
- You are an eye surgeon.

- Your scalpel misses its mark by 3 cm .
- The error is 3 cm in each of the previous examples, but they are not equivalent!
- This type of error is called the absolute error.
- It is the absolute value of the difference between the measured value and the accepted value.

Absolute Error = \|measured value - accepted value】

- The accepted value is most probable value or the value based on references
- Only the size of the error matters, not the sign.
- The absolute error tells you how far you are from the accepted value.
- It does not tell you how significant the error is.
- Being off course by 3 cm on a trip to San Francisco is insignificant, because San Francisco is very big.
- Being off by 3 cm in eye surgery means you are operating on the wrong eye.
- It is necessary to compare the size of the error to the size of what is being measured to understand the significance of the error.
- The percentage error compares the absolute error to the size of what is being measured.
- It is the absolute value of the difference between the measured value and the accepted value all divided by the accepted value and multiplied by 100%.
- Aluminum has a density of $2.7 \mathrm{~g} / \mathrm{mL}$. A student measured some aluminum, and determined that a sample of aluminum with a mass of 21.6 g occupied 4.0 mL . How big is the error?
- $D=\frac{m}{V}=\frac{21.6 \mathrm{~g}}{4.0 m L}=5.4 \mathrm{~g} / \mathrm{mL}$
- $\%$ error $=\frac{\mid \text { measured value }- \text { accepted value } \mid}{\text { accepted value }} \times 100 \%$

$$
\% \text { error }=\frac{|5.4 \mathrm{~s} / \mathrm{mL}-2.7 \mathrm{~g} / \mathrm{mL}|}{2.7^{8} / \mathrm{mL}} \times 100 \%=\frac{2.78 / \mathrm{mL}}{2.7^{8} / \mathrm{mL}} \times 100 \%=100 \%
$$

- The error is as big as what is being measured!!

