Tannperaturo and Prossuire
on the vollune of a gas
© Evan P. Silberstein, 2010

Air Pressure

- Evangelista Torricelli invented the mercury barometer in 1643 by inverting a mercury filled glass tube into a dish of mercury.
- He found that air pressure could support a column of mercury 760 mm high.
- This knowledge was helpful in quantifying the
 relationship between the pressure on a gas and its volume.

Note: Standard atmospheric pressure is $760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}=101.3 \mathrm{kPa}$

Pressure and Volume

- You can observe the relationship between pressure and the volume of a gas by constructing a Cartesian diver from a soda bottle and a medicine dropper.
- When you squeeze on the soda bottle, the dropper dives.
- This is because as the pressure increases, the volume of the air bubble in the medicine dropper decreases.

Robert Boyle

- In 1662, Robert Boyle published his study of the volume of gases at different pressures and constant temperature.
- Boyle gathered data by doing experiments using a mercury manometer, a " J " shaped tube sealed at one end, and partially filled with mercury.

ROBERT BOYLE

Boyle's Experiment

- Boyle measured the relationship between the pressure and volume of a gas.
- First he measured the volume of air trapped by mercury in a J-tube at normal atmospheric pressure. (760 mm Hg)
- Then he added mercury and measured the volume of air trapped in a J-tube at twice the pressure.

Boyle"s Law

- As the pressure on a gas increases at a constant temperature, the volume decreases.
- In fact if the pressure doubles, the volume is cut in half.
- As a result:
the product of the pressure and the volume is a constant.

$$
P V=k
$$

Temperature and Volume

- A balloon is placed over the lip of a flask. Then the flask is placed on a hotplate and heated.
- The balloon blows up.
- As a gas is heated, its volume increases.

Charles" Law

- In 1787 Jacques Charles did experiments on how the volume of gases depended on temperature.
- As the temperature of a gas increases at a constant pressure, the volume increases.
- In fact if the Kelvin temperature doubles, the volume doubles.

- As a result:
the ratio of the volume and the temperature is a constant.

$$
\frac{\mathbf{V}}{T}=k
$$

The Combined Gas Law

- If $\mathbf{P V}=\boldsymbol{k}$ and $\frac{\mathbf{V}}{\mathbf{T}}=\boldsymbol{k}$ then $\frac{\mathbf{P V}}{\mathbf{T}}=\boldsymbol{k}$.
- Let's call the initial pressure, volume, and temperature of a gas $\mathbf{P}_{1}, \mathbf{V}_{1}$, and \mathbf{T}_{1}.
- After conditions change, let's call the new pressure, volume, and temperature of the gas $\mathbf{P}_{2}, \mathbf{V}_{2}$, and \mathbf{T}_{2}.
- In that case, since $\frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{1}}=\boldsymbol{k}$ and $\frac{\mathbf{P}_{2} \mathbf{V}_{2}}{\mathbf{T}_{2}}=\boldsymbol{k}$,

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Combined Gas Law Problem

A gas at $27^{\circ} \mathrm{C}$ and $\mathbf{1 0 0}$. kPa occupies $250 . \mathrm{mL}$. How much space will the gas occupy if the temperature is reduced to $0.0^{\circ} \mathrm{C}$ and the pressure is increased to $\mathbf{1 5 0} . \mathrm{kPa}$?

- STEP 1: Identify the variables
- $P_{1}=100 . \mathrm{kPa}$
- $\mathrm{P}_{2}=150 . \mathrm{kPa}$
- $\mathrm{V}_{1}=250 \mathrm{~mL}$
- $\mathrm{V}_{2}=\mathrm{V}_{2}$
- $\mathrm{T}_{1}=27^{\circ} \mathrm{C}+273=300 . \mathrm{K} \quad \circ \mathrm{T}_{2}=0^{\circ} \mathrm{C}+273=273 \mathrm{~K}$
- Step 2: Plug the variables into the equation $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \quad \frac{(100 . \mathrm{kPa})(250 . \mathrm{mL})}{(300 . \mathrm{K})}=\frac{(150 . \mathrm{kPa})\left(\mathrm{V}_{2}\right)}{(273 \mathrm{~K})}$
- STEP 3: Solve for the unknown
$\frac{(273 \mathrm{~K})(100 . \mathrm{kPa})(250 . \mathrm{mL})}{(150 . \mathrm{kPa})(300 . \mathrm{K})}=\mathrm{V}_{2}=152 \mathrm{~mL}$

The Ideal Gas Law

- Up to now, we've considered only what happens when the conditions on a sample of gas change. (This means the number of moles is constant.)
- Avogadro's law tells us that moles are a variable too ($V=k n$).
- When moles are added to the relationship, the equation $P V \propto T$ becomes $P V \propto n T$.
- The universal gas constant " R " is used to get an equality.

$$
P V=n R T
$$

Finding "R"

- If $P V=n R T$, it follows that $R=\frac{P V}{n T}$.
- We know that 1 mol of gas occupies 22.4 L at STP.
- Substituting into the equation we get:

$$
R=\frac{(1 \mathrm{~atm})(22.4 \mathrm{~L})}{(1 \mathrm{~mol})(273 \mathrm{~K})}=0.0821 \frac{\mathrm{Loatm}}{\mathrm{~mol} \mathrm{~K}}
$$

An Ideal Gas Law Problem

What is the volume of 6.06 g of hydrogen at
$27^{\circ} \mathrm{C}$ and 1.50 atm ?

- If $\mathrm{PV}=n \mathrm{RT}$, then $\mathrm{V}=\frac{n \mathrm{RT}}{\mathrm{P}}$.
- Step 1: Determine the number of moles of the gas.

$$
(6.06 \mathrm{~g})\left(\frac{1 \mathrm{~mol}}{2.02 \mathrm{~g}}\right)=3.00 \mathrm{~mol}
$$

- Step 2: Substitute into the equation.

$$
V=\frac{(3.00 \mathrm{~mol})\left(0.0821 \frac{1 . \mathrm{atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \times(300 \mathrm{~K})}{(1.50 \mathrm{~atm})}=49.3 \mathrm{~L}
$$

