

Gas Law Versatility

- Using the gas constant and the ideal gas law (PV = nRT), it is possible to determine the value of any of the four variables knowing the other three.
- Mass can be used as one of the variables since it has a relationship with moles (n).
- Consequently the molar mass and density of a gas can be determined from the ideal gas law.

Deriving the Density Equation

- PV = nRT
- Let m = mass and M = molar massThen $n = \frac{m}{M}$.
- Substituting, we get $PV = \frac{mRT}{M}$.
- Solving for molar mass, we get $M = \bigvee_{V}$, but density is mass per unit volume ... $D = \frac{m}{V}$.

WRITE

• Molar mass, $M = \frac{DRT}{P}$. • Density, $D = \frac{PM}{RT}$.

WRIT

What is the molar mass of a gas that has a density of 2.16 g/L at 15°C and 3.00 atm? • $M = \frac{DRT}{P}$ $M = \frac{(2.16 g/L)(0.0821 \frac{L \cdot atm}{mol \cdot K})(288 \text{ K})}{(3.00 atm)} = 17.0 g/mol$

What is the density of methane (CH₄) at 100.°C and 2.00 atm? • $D = \frac{PM}{RT}$ $D = \frac{(2.00 \ atm) (16.04 \ g/mol)}{(0.0821 \ \frac{L \cdot atm}{mol \cdot K})(373 \ K)} = 1.05 \ g/L$