
© Evan P. Silberstein, 2010

- Using the gas constant and the ideal gas law (PV = $n \mathrm{RT}$), it is possible to determine the value of any of the four variables knowing the other three.
- Mass can be used as one of the variables since it has a relationship with moles (n).
- Consequently the molar mass and density of a gas can be determined from the ideal gas law.

PV $=n \mathrm{RT}$

- Let $m=$ mass and $M=$ molar mass

Then $n=\frac{m}{M}$.

- Substituting, we get PV $=\frac{m R T}{M}$.
- Solving for molar mass, we get $M=\frac{M R T}{P V}$,
but density is mass per unit volume $\ldots \quad D=\frac{m}{V}$.
- Molar mass, $M=\frac{D R T}{P}$.
- Density, $D=\frac{P M}{R T}$.

What is the molar mass of a gas that has a density of $2.16 \mathrm{~g} / \mathrm{L}$ at $15^{\circ} \mathrm{C}$ and 3.00 atm ? - $M=\frac{D R T}{P}$
$M=\frac{(2.16 \mathrm{~g} / L)\left(0.0821 \frac{\left.\mathrm{~L} \frac{\mathrm{Latm}}{\mathrm{molOK}}\right)(288 \mathrm{~K})}{(3.00 \mathrm{~atm})}\right.}{(37.0 \mathrm{~g} / \mathrm{mol}}$

What is the density of methane $\left(\mathrm{CH}_{4}\right)$ at $100 .{ }^{\circ} \mathrm{C}$ and 2.00 atm?

- $D=\frac{P M}{R T}$

$$
D=\frac{(2.00 \mathrm{~atm})(16.04 \mathrm{~g} / \mathrm{mol})}{\left(0.0821 \frac{\text { L.atm }}{\mathrm{mol} \mathrm{k})}\right)(373 \mathrm{~K})}=1.05 \mathrm{~g} / \mathrm{L}
$$

