

- When any of the reagents in a reaction is a gas, a relationship exists between the volume and the number of moles defined by the ideal gas law.
- You may recall the roadmap for mass problems.

Mass $_{1} \leftrightarrows$ Moles $_{1} \longleftrightarrow \mathbb{M O L E S}_{2} \rightarrow$ NaSs $_{2}$
Volume $_{1}$

- Now volume can be added to the mix using the ideal gas law.
- The ideal gas law is PV = nRT.
- Solving for moles, we get $n=\frac{P V}{R T}$.
- Once you have moles, you can solve for any of the quantities in the roadmap by factor label.

Mass $_{1} \leftrightarrows$ Moles $_{1} \leftrightarrows$ Molles $_{2}$
Volume ${ }_{1}$

- Additionally, you can start with the roadmap to find moles, and substitute into the gas law to find any of the other variables.

How many grams of rust $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ form when iron reacts with 25.0 L of oxygen at $25^{\circ} \mathrm{C}$ and 200 . kPa ?

- Step 1: Write a balanced equation

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

- Step 2: Substitute values into the gas equation to get the number of moles of gas.

$$
n=\frac{P V}{R T}=\frac{(200 . \mathrm{kPa})(1 \mathrm{~atm})(25.0 \mathrm{~L})}{(101.3 \mathrm{kPa})\left(0.0821 \frac{L \cdot a t a l}{\frac{L \cdot a}{m} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})}=2.02 \mathrm{~mol}
$$

- Step 3: Solve the remaining problem by the factor label method.

$$
\left(2.02 \mathrm{~mol}_{\mathrm{O}_{2}}\right)\left(\frac{2 \mathrm{~mol}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}}{3 \mathrm{~mol}_{\mathrm{O}_{2}}}\right)\left(\frac{159.7 g_{\mathrm{Fe}_{2} \mathrm{O}_{3}}}{1 \mathrm{~mol}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}}\right)=215 g_{\mathrm{Fe}_{2} \mathrm{O}_{3}}
$$

- At constant temperature and pressure, volumevolume problems can be handled simply by using Avogadro's law ($\mathrm{V} \propto n$) because all the other variables in the gas laws cancel out.
How many milliliters of ammonia are formed when 150.mL of hydrogen combines with nitrogen at constant temperature and pressure?
- Step 1: Write a balanced equation.
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
- Step 2: Set up a proportion and solve.

$$
\frac{3 \mathrm{~mol}}{150 . \mathrm{mL}}=\frac{2 \mathrm{~mol}}{x} \quad x=100 . \mathrm{mL}
$$

- At STP the molar volume (GMV) of a gas is always 22.4 L . Since $22.4 \mathrm{~L}=1 \mathrm{~mol}$ at STP, the GMV can be used in a factor label problem in much the same way as the molar mass (GFM).
How many liters of oxygen are liberated when 18.4 g of potassium chlorate decompose at STP?
- Step 1: Write a balanced equation.

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

- Step 2: Solve by the factor label method.

$$
\left(18.4 g_{\text {KCIO }_{3}}\right)\left(\frac{1 \text { mol }_{\text {KCIO }_{3}}}{122.5 g_{\text {KCIO }_{3}}}\right)\left(\frac{3 \mathrm{~mol}_{\mathrm{O}_{2}}}{2 \mathrm{~mol}_{\text {KCIO }_{3}}}\right)\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)=5.05 L_{O_{2}}
$$

