Grabam's Law

The Rate of Elfunlon

Effasion

- A helium balloon will fall in a couple days because the helium escapes from the balloon slowly through microscopic holes.
- The passage of the gas through microscopic holes is called effusion.
- As the temperature increases, molecules move faster, and the effusion rate increases.

- Temperature is the average kinetic energy of the molecules.
- Kinetic energy (K.E.) is related to both the $\operatorname{mass}(m)$ and speed (v) of the molecules as follows: K.E. $=1 / 2 m v^{2}$.
- For two gases at the same temperature, only the masses effect the relative rate of effusion.
- For gas A and gas B at the same temperature:
- $T_{A}=T_{B}$ so $1 / 2 m_{A} v_{A}^{2}=1 / 2 m_{B} v_{B}^{2}$
- For any molecule, the ratio of molar mass (M) to molecular mass (m) is Avogadro's number, so $\frac{M_{A}}{m_{A}}=\frac{M_{B}}{m_{B}} . M$ can be substituted for m above.
- $1 / 2 M_{A} v_{A}^{2}=1 / 2 M_{B} v_{B}^{2}$
- This can be reduced to $M_{A} v_{A}^{2}=M_{B} v_{B}^{2}$
\circ As a result $\frac{v_{A}{ }^{2}}{v_{B}{ }^{2}}=\frac{M_{B}}{M_{A}}$ and $\frac{v_{A}}{v_{B}}=\frac{\sqrt{M_{B}}}{\sqrt{M_{A}}}$
- The equation that was just derived, $\frac{v_{A}}{v_{B}}=\sqrt{\sqrt{M_{B}}} \sqrt{M_{A}}$,
is Graham's Law.
- It is usually stated:
$\frac{\text { rate of effusion of } A}{\text { rate of effusion of } B}=\frac{\sqrt{M_{B}}}{\sqrt{M_{A}}}$
- Graham's law makes it possible to:
- Calculate the ratio of effusion rates for two gases.
- Calculate the molar mass of an unknown gas if the ratio of its diffusion rate to a known gas is measured.

Cakculating Relative Epfusion

- How does the rate of effusion of fluorine compare to the rate of effusion of chlorine?

rate of effusion of $F_{2}=\sqrt{\frac{\sqrt{7.0}}{\sqrt{3.0}}}=1.37$
rate of effusion of $\mathrm{Cl}_{2} \quad \sqrt{38.0}$

- What is the molar mass of a gas that effuses at 1.37 times the speed of oxygen?
- $\frac{\text { rate of effusion of } A}{\text { rate of effusion of } O_{2}}=\sqrt{M_{O_{0}}}$
- $1.37=\frac{\sqrt{32.0} \mathrm{~g} / \mathrm{mol}}{\sqrt{M_{A}}}$ so $(1.37)^{2}=\frac{32.0 \mathrm{~g} / \mathrm{mol}}{M_{A}}$
- $M_{A}=\frac{32.0 \mathrm{~g} / \mathrm{mol}}{(1.37)^{2}}=17.0 \mathrm{~g} / \mathrm{mol}$

